↳ ITRS
↳ ITRStoIDPProof
z
Cond_eval2(TRUE, x, y) → eval(-@z(x, 1@z), y)
Cond_eval(TRUE, x, y) → eval(-@z(x, 1@z), y)
Cond_eval1(TRUE, x, y) → eval(x, -@z(y, 1@z))
eval(x, y) → Cond_eval1(&&(&&(>@z(+@z(x, y), 0@z), >=@z(y, x)), >@z(y, x)), x, y)
eval(x, y) → Cond_eval3(&&(&&(>@z(+@z(x, y), 0@z), >=@z(y, x)), >@z(x, y)), x, y)
Cond_eval3(TRUE, x, y) → eval(x, -@z(y, 1@z))
eval(x, y) → Cond_eval(&&(>@z(+@z(x, y), 0@z), >@z(x, y)), x, y)
eval(x, y) → Cond_eval2(&&(&&(>@z(+@z(x, y), 0@z), >=@z(y, x)), =@z(x, y)), x, y)
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
Cond_eval2(TRUE, x, y) → eval(-@z(x, 1@z), y)
Cond_eval(TRUE, x, y) → eval(-@z(x, 1@z), y)
Cond_eval1(TRUE, x, y) → eval(x, -@z(y, 1@z))
eval(x, y) → Cond_eval1(&&(&&(>@z(+@z(x, y), 0@z), >=@z(y, x)), >@z(y, x)), x, y)
eval(x, y) → Cond_eval3(&&(&&(>@z(+@z(x, y), 0@z), >=@z(y, x)), >@z(x, y)), x, y)
Cond_eval3(TRUE, x, y) → eval(x, -@z(y, 1@z))
eval(x, y) → Cond_eval(&&(>@z(+@z(x, y), 0@z), >@z(x, y)), x, y)
eval(x, y) → Cond_eval2(&&(&&(>@z(+@z(x, y), 0@z), >=@z(y, x)), =@z(x, y)), x, y)
(0) -> (6), if ((x[0] →* x[6])∧(y[0] →* y[6])∧(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], 1@z) →* x[0]))
(1) -> (2), if ((y[1] →* y[2])∧(-@z(x[1], 1@z) →* x[2]))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], 1@z) →* x[3]))
(1) -> (4), if ((y[1] →* y[4])∧(-@z(x[1], 1@z) →* x[4]))
(2) -> (7), if ((x[2] →* x[7])∧(y[2] →* y[7])∧(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])) →* TRUE))
(3) -> (1), if ((x[3] →* x[1])∧(y[3] →* y[1])∧(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])) →* TRUE))
(4) -> (5), if ((x[4] →* x[5])∧(y[4] →* y[5])∧(&&(&&(>@z(+@z(x[4], y[4]), 0@z), >=@z(y[4], x[4])), >@z(x[4], y[4])) →* TRUE))
(5) -> (0), if ((-@z(y[5], 1@z) →* y[0])∧(x[5] →* x[0]))
(5) -> (2), if ((-@z(y[5], 1@z) →* y[2])∧(x[5] →* x[2]))
(5) -> (3), if ((-@z(y[5], 1@z) →* y[3])∧(x[5] →* x[3]))
(5) -> (4), if ((-@z(y[5], 1@z) →* y[4])∧(x[5] →* x[4]))
(6) -> (0), if ((-@z(y[6], 1@z) →* y[0])∧(x[6] →* x[0]))
(6) -> (2), if ((-@z(y[6], 1@z) →* y[2])∧(x[6] →* x[2]))
(6) -> (3), if ((-@z(y[6], 1@z) →* y[3])∧(x[6] →* x[3]))
(6) -> (4), if ((-@z(y[6], 1@z) →* y[4])∧(x[6] →* x[4]))
(7) -> (0), if ((y[7] →* y[0])∧(-@z(x[7], 1@z) →* x[0]))
(7) -> (2), if ((y[7] →* y[2])∧(-@z(x[7], 1@z) →* x[2]))
(7) -> (3), if ((y[7] →* y[3])∧(-@z(x[7], 1@z) →* x[3]))
(7) -> (4), if ((y[7] →* y[4])∧(-@z(x[7], 1@z) →* x[4]))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (6), if ((x[0] →* x[6])∧(y[0] →* y[6])∧(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])) →* TRUE))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], 1@z) →* x[0]))
(1) -> (2), if ((y[1] →* y[2])∧(-@z(x[1], 1@z) →* x[2]))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], 1@z) →* x[3]))
(1) -> (4), if ((y[1] →* y[4])∧(-@z(x[1], 1@z) →* x[4]))
(2) -> (7), if ((x[2] →* x[7])∧(y[2] →* y[7])∧(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])) →* TRUE))
(3) -> (1), if ((x[3] →* x[1])∧(y[3] →* y[1])∧(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])) →* TRUE))
(4) -> (5), if ((x[4] →* x[5])∧(y[4] →* y[5])∧(&&(&&(>@z(+@z(x[4], y[4]), 0@z), >=@z(y[4], x[4])), >@z(x[4], y[4])) →* TRUE))
(5) -> (0), if ((-@z(y[5], 1@z) →* y[0])∧(x[5] →* x[0]))
(5) -> (2), if ((-@z(y[5], 1@z) →* y[2])∧(x[5] →* x[2]))
(5) -> (3), if ((-@z(y[5], 1@z) →* y[3])∧(x[5] →* x[3]))
(5) -> (4), if ((-@z(y[5], 1@z) →* y[4])∧(x[5] →* x[4]))
(6) -> (0), if ((-@z(y[6], 1@z) →* y[0])∧(x[6] →* x[0]))
(6) -> (2), if ((-@z(y[6], 1@z) →* y[2])∧(x[6] →* x[2]))
(6) -> (3), if ((-@z(y[6], 1@z) →* y[3])∧(x[6] →* x[3]))
(6) -> (4), if ((-@z(y[6], 1@z) →* y[4])∧(x[6] →* x[4]))
(7) -> (0), if ((y[7] →* y[0])∧(-@z(x[7], 1@z) →* x[0]))
(7) -> (2), if ((y[7] →* y[2])∧(-@z(x[7], 1@z) →* x[2]))
(7) -> (3), if ((y[7] →* y[3])∧(-@z(x[7], 1@z) →* x[3]))
(7) -> (4), if ((y[7] →* y[4])∧(-@z(x[7], 1@z) →* x[4]))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
(1) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥))
(2) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0)
(5) (0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(6) (&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3]))=TRUE∧x[3]=x[1]∧y[3]=y[1] ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(-@z(x[1], 1@z), y[1])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(7) (>@z(+@z(x[3], y[3]), 0@z)=TRUE∧>@z(x[3], y[3])=TRUE ⇒ COND_EVAL(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL(TRUE, x[3], y[3])≥EVAL(-@z(x[3], 1@z), y[3])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(8) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(9) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(10) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0)
(11) (x[3] ≥ 0∧(-2)y[3] + x[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0)
(12) (x[3] ≥ 0∧(-2)y[3] + x[3] ≥ 0∧y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0)
(13) (x[3] ≥ 0∧(2)y[3] + x[3] ≥ 0∧y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0)
(14) ((2)y[3] + x[3] ≥ 0∧x[3] ≥ 0∧y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0)
(15) (EVAL(x[2], y[2])≥NonInfC∧EVAL(x[2], y[2])≥COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])∧(UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥))
(16) ((UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) ((UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (0 ≥ 0∧(UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 ≥ 0)
(19) (0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 = 0)
(20) (EVAL(x[3], y[3])≥NonInfC∧EVAL(x[3], y[3])≥COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])∧(UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥))
(21) ((UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(22) ((UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(23) (0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0)
(24) (0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(25) (EVAL(x[4], y[4])≥NonInfC∧EVAL(x[4], y[4])≥COND_EVAL3(&&(&&(>@z(+@z(x[4], y[4]), 0@z), >=@z(y[4], x[4])), >@z(x[4], y[4])), x[4], y[4])∧(UIncreasing(COND_EVAL3(&&(&&(>@z(+@z(x[4], y[4]), 0@z), >=@z(y[4], x[4])), >@z(x[4], y[4])), x[4], y[4])), ≥))
(26) ((UIncreasing(COND_EVAL3(&&(&&(>@z(+@z(x[4], y[4]), 0@z), >=@z(y[4], x[4])), >@z(x[4], y[4])), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(27) ((UIncreasing(COND_EVAL3(&&(&&(>@z(+@z(x[4], y[4]), 0@z), >=@z(y[4], x[4])), >@z(x[4], y[4])), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(28) ((UIncreasing(COND_EVAL3(&&(&&(>@z(+@z(x[4], y[4]), 0@z), >=@z(y[4], x[4])), >@z(x[4], y[4])), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) ((UIncreasing(COND_EVAL3(&&(&&(>@z(+@z(x[4], y[4]), 0@z), >=@z(y[4], x[4])), >@z(x[4], y[4])), x[4], y[4])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(30) (x[4]=x[5]∧y[4]=y[5]∧&&(&&(>@z(+@z(x[4], y[4]), 0@z), >=@z(y[4], x[4])), >@z(x[4], y[4]))=TRUE ⇒ COND_EVAL3(TRUE, x[5], y[5])≥NonInfC∧COND_EVAL3(TRUE, x[5], y[5])≥EVAL(x[5], -@z(y[5], 1@z))∧(UIncreasing(EVAL(x[5], -@z(y[5], 1@z))), ≥))
(31) (>@z(x[4], y[4])=TRUE∧>@z(+@z(x[4], y[4]), 0@z)=TRUE∧>=@z(y[4], x[4])=TRUE ⇒ COND_EVAL3(TRUE, x[4], y[4])≥NonInfC∧COND_EVAL3(TRUE, x[4], y[4])≥EVAL(x[4], -@z(y[4], 1@z))∧(UIncreasing(EVAL(x[5], -@z(y[5], 1@z))), ≥))
(32) (-1 + x[4] + (-1)y[4] ≥ 0∧-1 + x[4] + y[4] ≥ 0∧y[4] + (-1)x[4] ≥ 0 ⇒ (UIncreasing(EVAL(x[5], -@z(y[5], 1@z))), ≥)∧-1 + (-1)Bound + y[4] + (2)x[4] ≥ 0∧0 ≥ 0)
(33) (-1 + x[4] + (-1)y[4] ≥ 0∧-1 + x[4] + y[4] ≥ 0∧y[4] + (-1)x[4] ≥ 0 ⇒ (UIncreasing(EVAL(x[5], -@z(y[5], 1@z))), ≥)∧-1 + (-1)Bound + y[4] + (2)x[4] ≥ 0∧0 ≥ 0)
(34) (y[4] + (-1)x[4] ≥ 0∧-1 + x[4] + (-1)y[4] ≥ 0∧-1 + x[4] + y[4] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + y[4] + (2)x[4] ≥ 0∧(UIncreasing(EVAL(x[5], -@z(y[5], 1@z))), ≥))
(35) (x[0]=x[6]∧y[0]=y[6]∧&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0]))=TRUE ⇒ COND_EVAL1(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL1(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(36) (>@z(y[0], x[0])=TRUE∧>@z(+@z(x[0], y[0]), 0@z)=TRUE∧>=@z(y[0], x[0])=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(x[0], -@z(y[0], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(37) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(38) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(39) (-1 + y[0] + (-1)x[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(40) (y[0] ≥ 0∧1 + y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(41) (y[0] ≥ 0∧1 + y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(42) (y[0] ≥ 0∧1 + y[0] ≥ 0∧(-2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(43) ((2)x[0] + y[0] ≥ 0∧1 + (2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(44) (&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2]))=TRUE∧y[2]=y[7]∧x[2]=x[7] ⇒ COND_EVAL2(TRUE, x[7], y[7])≥NonInfC∧COND_EVAL2(TRUE, x[7], y[7])≥EVAL(-@z(x[7], 1@z), y[7])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(45) (>@z(+@z(x[2], y[2]), 0@z)=TRUE∧>=@z(y[2], x[2])=TRUE∧>=@z(x[2], y[2])=TRUE∧<=@z(x[2], y[2])=TRUE ⇒ COND_EVAL2(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL2(TRUE, x[2], y[2])≥EVAL(-@z(x[2], 1@z), y[2])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(46) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧0 ≥ 0∧1 ≥ 0)
(47) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧0 ≥ 0∧1 ≥ 0)
(48) (y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧-1 + x[2] + y[2] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧0 ≥ 0)
(49) (x[2] ≥ 0∧(-1)x[2] ≥ 0∧x[2] ≥ 0∧-1 + (2)y[2] + (-1)x[2] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧0 ≥ 0)
(50) (0 ≥ 0∧0 ≥ 0∧0 ≥ 0∧-1 + (2)y[2] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧0 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(0@z) = 0
POL(COND_EVAL1(x1, x2, x3)) = -1 + x3 + (2)x2 + (-1)x1
POL(TRUE) = 1
POL(&&(x1, x2)) = 0
POL(COND_EVAL(x1, x2, x3)) = -1 + x3 + (2)x2 + (-1)x1
POL(FALSE) = 2
POL(>@z(x1, x2)) = -1
POL(=@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL3(x1, x2, x3)) = -1 + x3 + (2)x2
POL(COND_EVAL2(x1, x2, x3)) = -1 + x3 + (2)x2 + (-1)x1
POL(EVAL(x1, x2)) = -1 + x2 + (2)x1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL(TRUE, x[1], y[1]) → EVAL(-@z(x[1], 1@z), y[1])
COND_EVAL3(TRUE, x[5], y[5]) → EVAL(x[5], -@z(y[5], 1@z))
COND_EVAL3(TRUE, x[5], y[5]) → EVAL(x[5], -@z(y[5], 1@z))
EVAL(x[0], y[0]) → COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])
EVAL(x[2], y[2]) → COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])
EVAL(x[3], y[3]) → COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])
EVAL(x[4], y[4]) → COND_EVAL3(&&(&&(>@z(+@z(x[4], y[4]), 0@z), >=@z(y[4], x[4])), >@z(x[4], y[4])), x[4], y[4])
COND_EVAL1(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], 1@z))
COND_EVAL2(TRUE, x[7], y[7]) → EVAL(-@z(x[7], 1@z), y[7])
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(6) -> (3), if ((-@z(y[6], 1@z) →* y[3])∧(x[6] →* x[3]))
(7) -> (4), if ((y[7] →* y[4])∧(-@z(x[7], 1@z) →* x[4]))
(6) -> (4), if ((-@z(y[6], 1@z) →* y[4])∧(x[6] →* x[4]))
(7) -> (3), if ((y[7] →* y[3])∧(-@z(x[7], 1@z) →* x[3]))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], 1@z) →* x[3]))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], 1@z) →* x[0]))
(7) -> (2), if ((y[7] →* y[2])∧(-@z(x[7], 1@z) →* x[2]))
(1) -> (2), if ((y[1] →* y[2])∧(-@z(x[1], 1@z) →* x[2]))
(2) -> (7), if ((x[2] →* x[7])∧(y[2] →* y[7])∧(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])) →* TRUE))
(7) -> (0), if ((y[7] →* y[0])∧(-@z(x[7], 1@z) →* x[0]))
(0) -> (6), if ((x[0] →* x[6])∧(y[0] →* y[6])∧(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])) →* TRUE))
(3) -> (1), if ((x[3] →* x[1])∧(y[3] →* y[1])∧(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])) →* TRUE))
(6) -> (0), if ((-@z(y[6], 1@z) →* y[0])∧(x[6] →* x[0]))
(6) -> (2), if ((-@z(y[6], 1@z) →* y[2])∧(x[6] →* x[2]))
(1) -> (4), if ((y[1] →* y[4])∧(-@z(x[1], 1@z) →* x[4]))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(6) -> (3), if ((-@z(y[6], 1@z) →* y[3])∧(x[6] →* x[3]))
(7) -> (0), if ((y[7] →* y[0])∧(-@z(x[7], 1@z) →* x[0]))
(0) -> (6), if ((x[0] →* x[6])∧(y[0] →* y[6])∧(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])) →* TRUE))
(3) -> (1), if ((x[3] →* x[1])∧(y[3] →* y[1])∧(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])) →* TRUE))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], 1@z) →* x[3]))
(7) -> (3), if ((y[7] →* y[3])∧(-@z(x[7], 1@z) →* x[3]))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], 1@z) →* x[0]))
(6) -> (2), if ((-@z(y[6], 1@z) →* y[2])∧(x[6] →* x[2]))
(6) -> (0), if ((-@z(y[6], 1@z) →* y[0])∧(x[6] →* x[0]))
(7) -> (2), if ((y[7] →* y[2])∧(-@z(x[7], 1@z) →* x[2]))
(1) -> (2), if ((y[1] →* y[2])∧(-@z(x[1], 1@z) →* x[2]))
(2) -> (7), if ((x[2] →* x[7])∧(y[2] →* y[7])∧(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])) →* TRUE))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
(1) (&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2]))=TRUE∧y[2]=y[7]∧x[2]=x[7]∧y[7]=y[3]∧-@z(x[7], 1@z)=x[3] ⇒ COND_EVAL2(TRUE, x[7], y[7])≥NonInfC∧COND_EVAL2(TRUE, x[7], y[7])≥EVAL(-@z(x[7], 1@z), y[7])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(2) (>@z(+@z(x[2], y[2]), 0@z)=TRUE∧>=@z(y[2], x[2])=TRUE∧>=@z(x[2], y[2])=TRUE∧<=@z(x[2], y[2])=TRUE ⇒ COND_EVAL2(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL2(TRUE, x[2], y[2])≥EVAL(-@z(x[2], 1@z), y[2])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(3) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
(4) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
(5) (y[2] + (-1)x[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧-1 + x[2] + y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧(-1)Bound + x[2] ≥ 0)
(6) (x[2] ≥ 0∧x[2] ≥ 0∧(-1)x[2] ≥ 0∧-1 + (2)y[2] + (-1)x[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧(-1)Bound + y[2] + (-1)x[2] ≥ 0)
(7) (0 ≥ 0∧0 ≥ 0∧0 ≥ 0∧-1 + (2)y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧(-1)Bound + y[2] ≥ 0)
(8) (&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2]))=TRUE∧y[2]=y[7]∧x[2]=x[7]∧y[7]=y[0]∧-@z(x[7], 1@z)=x[0] ⇒ COND_EVAL2(TRUE, x[7], y[7])≥NonInfC∧COND_EVAL2(TRUE, x[7], y[7])≥EVAL(-@z(x[7], 1@z), y[7])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(9) (>@z(+@z(x[2], y[2]), 0@z)=TRUE∧>=@z(y[2], x[2])=TRUE∧>=@z(x[2], y[2])=TRUE∧<=@z(x[2], y[2])=TRUE ⇒ COND_EVAL2(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL2(TRUE, x[2], y[2])≥EVAL(-@z(x[2], 1@z), y[2])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(10) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
(11) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
(12) (x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧-1 + x[2] + y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧(-1)Bound + x[2] ≥ 0)
(13) (1 + (-2)y[2] + x[2] ≥ 0∧(2)y[2] + -1 + (-1)x[2] ≥ 0∧(2)y[2] + -1 + (-1)x[2] ≥ 0∧x[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧1 + (-1)Bound + (-1)y[2] + x[2] ≥ 0)
(14) (&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2]))=TRUE∧y[2]=y[7]∧x[2]=x[7]∧-@z(x[7], 1@z)=x[2]1∧y[7]=y[2]1 ⇒ COND_EVAL2(TRUE, x[7], y[7])≥NonInfC∧COND_EVAL2(TRUE, x[7], y[7])≥EVAL(-@z(x[7], 1@z), y[7])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(15) (>@z(+@z(x[2], y[2]), 0@z)=TRUE∧>=@z(y[2], x[2])=TRUE∧>=@z(x[2], y[2])=TRUE∧<=@z(x[2], y[2])=TRUE ⇒ COND_EVAL2(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL2(TRUE, x[2], y[2])≥EVAL(-@z(x[2], 1@z), y[2])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(16) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
(17) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧(-1)Bound + x[2] ≥ 0∧0 ≥ 0)
(18) (x[2] + (-1)y[2] ≥ 0∧-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧0 ≥ 0∧(-1)Bound + x[2] ≥ 0)
(19) (x[2] ≥ 0∧-1 + (2)y[2] + x[2] ≥ 0∧(-1)x[2] ≥ 0∧(-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧0 ≥ 0∧(-1)Bound + y[2] + x[2] ≥ 0)
(20) (0 ≥ 0∧-1 + (2)y[2] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧0 ≥ 0∧(-1)Bound + y[2] ≥ 0)
(21) (EVAL(x[2], y[2])≥NonInfC∧EVAL(x[2], y[2])≥COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])∧(UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥))
(22) ((UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(23) ((UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(24) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥))
(25) (0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(26) (&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3]))=TRUE∧x[3]=x[1]∧y[3]=y[1]∧-@z(x[1], 1@z)=x[2]∧y[1]=y[2] ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(-@z(x[1], 1@z), y[1])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(27) (>@z(+@z(x[3], y[3]), 0@z)=TRUE∧>@z(x[3], y[3])=TRUE ⇒ COND_EVAL(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL(TRUE, x[3], y[3])≥EVAL(-@z(x[3], 1@z), y[3])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(28) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0∧1 ≥ 0)
(29) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0∧1 ≥ 0)
(30) (-1 + x[3] + (-1)y[3] ≥ 0∧-1 + x[3] + y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 ≥ 0)
(31) (x[3] ≥ 0∧(2)y[3] + x[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 ≥ 0)
(32) (x[3] ≥ 0∧(2)y[3] + x[3] ≥ 0∧y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 ≥ 0)
(33) (x[3] ≥ 0∧(-2)y[3] + x[3] ≥ 0∧y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 ≥ 0)
(34) ((2)y[3] + x[3] ≥ 0∧x[3] ≥ 0∧y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 ≥ 0)
(35) (&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3]))=TRUE∧x[3]=x[1]∧y[3]=y[1]∧-@z(x[1], 1@z)=x[3]1∧y[1]=y[3]1 ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(-@z(x[1], 1@z), y[1])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(36) (>@z(+@z(x[3], y[3]), 0@z)=TRUE∧>@z(x[3], y[3])=TRUE ⇒ COND_EVAL(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL(TRUE, x[3], y[3])≥EVAL(-@z(x[3], 1@z), y[3])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(37) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0∧1 ≥ 0)
(38) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0∧1 ≥ 0)
(39) (-1 + x[3] + (-1)y[3] ≥ 0∧-1 + x[3] + y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 ≥ 0)
(40) (x[3] ≥ 0∧(2)y[3] + x[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 ≥ 0)
(41) (x[3] ≥ 0∧(2)y[3] + x[3] ≥ 0∧y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 ≥ 0)
(42) (x[3] ≥ 0∧(-2)y[3] + x[3] ≥ 0∧y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 ≥ 0)
(43) ((2)y[3] + x[3] ≥ 0∧x[3] ≥ 0∧y[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 ≥ 0)
(44) (&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3]))=TRUE∧x[3]=x[1]∧y[3]=y[1]∧-@z(x[1], 1@z)=x[0]∧y[1]=y[0] ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(-@z(x[1], 1@z), y[1])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(45) (>@z(+@z(x[3], y[3]), 0@z)=TRUE∧>@z(x[3], y[3])=TRUE ⇒ COND_EVAL(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL(TRUE, x[3], y[3])≥EVAL(-@z(x[3], 1@z), y[3])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(46) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0∧1 ≥ 0)
(47) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0∧1 ≥ 0)
(48) (-1 + x[3] + (-1)y[3] ≥ 0∧-1 + x[3] + y[3] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0)
(49) (x[3] ≥ 0∧(2)y[3] + x[3] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0)
(50) (x[3] ≥ 0∧(2)y[3] + x[3] ≥ 0∧y[3] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0)
(51) (x[3] ≥ 0∧(-2)y[3] + x[3] ≥ 0∧y[3] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0)
(52) ((2)y[3] + x[3] ≥ 0∧x[3] ≥ 0∧y[3] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧0 ≥ 0)
(53) (EVAL(x[3], y[3])≥NonInfC∧EVAL(x[3], y[3])≥COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])∧(UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥))
(54) ((UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(55) ((UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(56) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥))
(57) (0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 = 0)
(58) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥))
(59) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(60) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(61) (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0)
(62) (0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(63) (x[6]=x[2]∧x[0]=x[6]∧y[0]=y[6]∧&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0]))=TRUE∧-@z(y[6], 1@z)=y[2] ⇒ COND_EVAL1(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL1(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(64) (>@z(y[0], x[0])=TRUE∧>@z(+@z(x[0], y[0]), 0@z)=TRUE∧>=@z(y[0], x[0])=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(x[0], -@z(y[0], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(65) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(66) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(67) (x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0∧-1 + y[0] + (-1)x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(68) ((2)x[0] + -1 + y[0] ≥ 0∧y[0] ≥ 0∧-1 + y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(69) ((2)x[0] + y[0] ≥ 0∧1 + y[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(70) ((2)x[0] + y[0] ≥ 0∧1 + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(71) ((-2)x[0] + y[0] ≥ 0∧1 + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(72) (y[0] ≥ 0∧1 + (2)x[0] + y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(73) (-@z(y[6], 1@z)=y[3]∧x[6]=x[3]∧x[0]=x[6]∧y[0]=y[6]∧&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0]))=TRUE ⇒ COND_EVAL1(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL1(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(74) (>@z(y[0], x[0])=TRUE∧>@z(+@z(x[0], y[0]), 0@z)=TRUE∧>=@z(y[0], x[0])=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(x[0], -@z(y[0], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(75) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(76) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(77) (x[0] + -1 + y[0] ≥ 0∧-1 + y[0] + (-1)x[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(78) ((2)x[0] + -1 + y[0] ≥ 0∧-1 + y[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(79) ((2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧1 + y[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(80) ((2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧1 + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(81) ((-2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧1 + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(82) (y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧1 + (2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(83) (x[0]=x[6]∧-@z(y[6], 1@z)=y[0]1∧y[0]=y[6]∧&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0]))=TRUE∧x[6]=x[0]1 ⇒ COND_EVAL1(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL1(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(84) (>@z(y[0], x[0])=TRUE∧>@z(+@z(x[0], y[0]), 0@z)=TRUE∧>=@z(y[0], x[0])=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(x[0], -@z(y[0], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(85) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(86) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(87) (y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧-1 + y[0] + (-1)x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(88) (1 + y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(89) (1 + y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(90) (1 + y[0] ≥ 0∧(-2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(91) (1 + (2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(0@z) = 0
POL(COND_EVAL1(x1, x2, x3)) = -1 + x2 + (-1)x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(COND_EVAL(x1, x2, x3)) = -1 + x2 + (-1)x1
POL(FALSE) = 0
POL(>@z(x1, x2)) = -1
POL(=@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL2(x1, x2, x3)) = -1 + x2 + (-1)x1
POL(EVAL(x1, x2)) = x1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL2(TRUE, x[7], y[7]) → EVAL(-@z(x[7], 1@z), y[7])
COND_EVAL2(TRUE, x[7], y[7]) → EVAL(-@z(x[7], 1@z), y[7])
EVAL(x[2], y[2]) → COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])
COND_EVAL(TRUE, x[1], y[1]) → EVAL(-@z(x[1], 1@z), y[1])
EVAL(x[3], y[3]) → COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])
EVAL(x[0], y[0]) → COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])
COND_EVAL1(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], 1@z))
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(6) -> (3), if ((-@z(y[6], 1@z) →* y[3])∧(x[6] →* x[3]))
(0) -> (6), if ((x[0] →* x[6])∧(y[0] →* y[6])∧(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])) →* TRUE))
(3) -> (1), if ((x[3] →* x[1])∧(y[3] →* y[1])∧(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])) →* TRUE))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], 1@z) →* x[3]))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], 1@z) →* x[0]))
(6) -> (2), if ((-@z(y[6], 1@z) →* y[2])∧(x[6] →* x[2]))
(6) -> (0), if ((-@z(y[6], 1@z) →* y[0])∧(x[6] →* x[0]))
(1) -> (2), if ((y[1] →* y[2])∧(-@z(x[1], 1@z) →* x[2]))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(6) -> (3), if ((-@z(y[6], 1@z) →* y[3])∧(x[6] →* x[3]))
(0) -> (6), if ((x[0] →* x[6])∧(y[0] →* y[6])∧(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])) →* TRUE))
(3) -> (1), if ((x[3] →* x[1])∧(y[3] →* y[1])∧(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])) →* TRUE))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], 1@z) →* x[3]))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], 1@z) →* x[0]))
(6) -> (0), if ((-@z(y[6], 1@z) →* y[0])∧(x[6] →* x[0]))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
(1) (&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3]))=TRUE∧x[3]=x[1]∧y[3]=y[1]∧-@z(x[1], 1@z)=x[3]1∧y[1]=y[3]1 ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(-@z(x[1], 1@z), y[1])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(2) (>@z(+@z(x[3], y[3]), 0@z)=TRUE∧>@z(x[3], y[3])=TRUE ⇒ COND_EVAL(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL(TRUE, x[3], y[3])≥EVAL(-@z(x[3], 1@z), y[3])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(3) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧(-1)Bound + y[3] + x[3] ≥ 0∧1 ≥ 0)
(4) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧(-1)Bound + y[3] + x[3] ≥ 0∧1 ≥ 0)
(5) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ 1 ≥ 0∧(-1)Bound + y[3] + x[3] ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(6) ((2)y[3] + x[3] ≥ 0∧x[3] ≥ 0 ⇒ 1 ≥ 0∧1 + (-1)Bound + (2)y[3] + x[3] ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(7) ((2)y[3] + x[3] ≥ 0∧x[3] ≥ 0∧y[3] ≥ 0 ⇒ 1 ≥ 0∧1 + (-1)Bound + (2)y[3] + x[3] ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(8) ((-2)y[3] + x[3] ≥ 0∧x[3] ≥ 0∧y[3] ≥ 0 ⇒ 1 ≥ 0∧1 + (-1)Bound + (-2)y[3] + x[3] ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(9) (x[3] ≥ 0∧(2)y[3] + x[3] ≥ 0∧y[3] ≥ 0 ⇒ 1 ≥ 0∧1 + (-1)Bound + x[3] ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(10) (&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3]))=TRUE∧x[3]=x[1]∧y[3]=y[1]∧-@z(x[1], 1@z)=x[0]∧y[1]=y[0] ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(-@z(x[1], 1@z), y[1])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(11) (>@z(+@z(x[3], y[3]), 0@z)=TRUE∧>@z(x[3], y[3])=TRUE ⇒ COND_EVAL(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL(TRUE, x[3], y[3])≥EVAL(-@z(x[3], 1@z), y[3])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(12) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧(-1)Bound + y[3] + x[3] ≥ 0∧1 ≥ 0)
(13) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧(-1)Bound + y[3] + x[3] ≥ 0∧1 ≥ 0)
(14) (-1 + x[3] + (-1)y[3] ≥ 0∧-1 + x[3] + y[3] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧(-1)Bound + y[3] + x[3] ≥ 0)
(15) ((-2)y[3] + x[3] ≥ 0∧x[3] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 + (-1)Bound + x[3] ≥ 0)
(16) ((-2)y[3] + x[3] ≥ 0∧x[3] ≥ 0∧y[3] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 + (-1)Bound + x[3] ≥ 0)
(17) ((2)y[3] + x[3] ≥ 0∧x[3] ≥ 0∧y[3] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 + (-1)Bound + x[3] ≥ 0)
(18) (x[3] ≥ 0∧(2)y[3] + x[3] ≥ 0∧y[3] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧1 + (-1)Bound + (2)y[3] + x[3] ≥ 0)
(19) (EVAL(x[3], y[3])≥NonInfC∧EVAL(x[3], y[3])≥COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])∧(UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥))
(20) ((UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(21) ((UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(22) (0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0)
(23) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0)
(24) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥))
(25) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(26) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(27) (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0)
(28) (0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(29) (-@z(y[6], 1@z)=y[3]∧x[6]=x[3]∧x[0]=x[6]∧y[0]=y[6]∧&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0]))=TRUE ⇒ COND_EVAL1(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL1(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(30) (>@z(y[0], x[0])=TRUE∧>@z(+@z(x[0], y[0]), 0@z)=TRUE∧>=@z(y[0], x[0])=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(x[0], -@z(y[0], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(31) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(32) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(33) (x[0] + -1 + y[0] ≥ 0∧-1 + y[0] + (-1)x[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(34) ((2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧1 + y[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(35) ((2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧1 + y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(36) ((-2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧1 + y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(37) (y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧1 + (2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(38) (x[0]=x[6]∧-@z(y[6], 1@z)=y[0]1∧y[0]=y[6]∧&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0]))=TRUE∧x[6]=x[0]1 ⇒ COND_EVAL1(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL1(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(39) (>@z(y[0], x[0])=TRUE∧>@z(+@z(x[0], y[0]), 0@z)=TRUE∧>=@z(y[0], x[0])=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(x[0], -@z(y[0], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(40) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(41) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(42) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(43) ((-2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧1 + (-2)x[0] + y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(44) ((-2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧1 + (-2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(45) ((2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧1 + (2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(46) (y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧1 + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(0@z) = 0
POL(COND_EVAL1(x1, x2, x3)) = -1 + x3 + x2 + (-1)x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(COND_EVAL(x1, x2, x3)) = -1 + x3 + x2 + (-1)x1
POL(FALSE) = -1
POL(>@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(EVAL(x1, x2)) = x2 + x1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL1(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], 1@z))
COND_EVAL(TRUE, x[1], y[1]) → EVAL(-@z(x[1], 1@z), y[1])
COND_EVAL(TRUE, x[1], y[1]) → EVAL(-@z(x[1], 1@z), y[1])
EVAL(x[3], y[3]) → COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])
EVAL(x[0], y[0]) → COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
(6) -> (3), if ((-@z(y[6], 1@z) →* y[3])∧(x[6] →* x[3]))
(0) -> (6), if ((x[0] →* x[6])∧(y[0] →* y[6])∧(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])) →* TRUE))
(6) -> (0), if ((-@z(y[6], 1@z) →* y[0])∧(x[6] →* x[0]))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDP
z
(0) -> (6), if ((x[0] →* x[6])∧(y[0] →* y[6])∧(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])) →* TRUE))
(6) -> (0), if ((-@z(y[6], 1@z) →* y[0])∧(x[6] →* x[0]))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
(1) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥))
(2) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0)
(5) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0)
(6) (x[0]=x[6]∧-@z(y[6], 1@z)=y[0]1∧y[0]=y[6]∧&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0]))=TRUE∧x[6]=x[0]1 ⇒ COND_EVAL1(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL1(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(7) (>@z(y[0], x[0])=TRUE∧>@z(+@z(x[0], y[0]), 0@z)=TRUE∧>=@z(y[0], x[0])=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(x[0], -@z(y[0], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(8) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧-2 + (-1)Bound + (2)y[0] ≥ 0∧0 ≥ 0)
(9) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧-2 + (-1)Bound + (2)y[0] ≥ 0∧0 ≥ 0)
(10) (y[0] + (-1)x[0] ≥ 0∧-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧-2 + (-1)Bound + (2)y[0] ≥ 0)
(11) (y[0] ≥ 0∧-1 + y[0] ≥ 0∧(2)x[0] + -1 + y[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧-2 + (-1)Bound + (2)x[0] + (2)y[0] ≥ 0)
(12) (1 + y[0] ≥ 0∧y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧(-1)Bound + (2)x[0] + (2)y[0] ≥ 0)
(13) (1 + y[0] ≥ 0∧y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧(-1)Bound + (2)x[0] + (2)y[0] ≥ 0)
(14) (1 + y[0] ≥ 0∧y[0] ≥ 0∧(-2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧(-1)Bound + (-2)x[0] + (2)y[0] ≥ 0)
(15) (1 + (2)x[0] + y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧(-1)Bound + (2)x[0] + (2)y[0] ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(0@z) = 0
POL(COND_EVAL1(x1, x2, x3)) = (2)x3 + (2)x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(EVAL(x1, x2)) = -1 + (2)x2
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
EVAL(x[0], y[0]) → COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])
COND_EVAL1(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], 1@z))
COND_EVAL1(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], 1@z))
&&(FALSE, FALSE)1 → FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 → TRUE1
&&(FALSE, TRUE)1 → FALSE1
&&(TRUE, FALSE)1 → FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
↳ IDP
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(3) -> (1), if ((x[3] →* x[1])∧(y[3] →* y[1])∧(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])) →* TRUE))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], 1@z) →* x[3]))
(1) -> (0), if ((y[1] →* y[0])∧(-@z(x[1], 1@z) →* x[0]))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(3) -> (1), if ((x[3] →* x[1])∧(y[3] →* y[1])∧(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])) →* TRUE))
(1) -> (3), if ((y[1] →* y[3])∧(-@z(x[1], 1@z) →* x[3]))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
(1) (&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3]))=TRUE∧x[3]=x[1]∧y[3]=y[1]∧-@z(x[1], 1@z)=x[3]1∧y[1]=y[3]1 ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(-@z(x[1], 1@z), y[1])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(2) (>@z(+@z(x[3], y[3]), 0@z)=TRUE∧>@z(x[3], y[3])=TRUE ⇒ COND_EVAL(TRUE, x[3], y[3])≥NonInfC∧COND_EVAL(TRUE, x[3], y[3])≥EVAL(-@z(x[3], 1@z), y[3])∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(3) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧(-1)Bound + (2)y[3] + (2)x[3] ≥ 0∧0 ≥ 0)
(4) (-1 + x[3] + y[3] ≥ 0∧-1 + x[3] + (-1)y[3] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥)∧(-1)Bound + (2)y[3] + (2)x[3] ≥ 0∧0 ≥ 0)
(5) (-1 + x[3] + (-1)y[3] ≥ 0∧-1 + x[3] + y[3] ≥ 0 ⇒ (-1)Bound + (2)y[3] + (2)x[3] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(6) (x[3] ≥ 0∧(2)y[3] + x[3] ≥ 0 ⇒ 2 + (-1)Bound + (4)y[3] + (2)x[3] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(7) (x[3] ≥ 0∧(2)y[3] + x[3] ≥ 0∧y[3] ≥ 0 ⇒ 2 + (-1)Bound + (4)y[3] + (2)x[3] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(8) (x[3] ≥ 0∧(-2)y[3] + x[3] ≥ 0∧y[3] ≥ 0 ⇒ 2 + (-1)Bound + (-4)y[3] + (2)x[3] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(9) ((2)y[3] + x[3] ≥ 0∧x[3] ≥ 0∧y[3] ≥ 0 ⇒ 2 + (-1)Bound + (2)x[3] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), y[1])), ≥))
(10) (EVAL(x[3], y[3])≥NonInfC∧EVAL(x[3], y[3])≥COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])∧(UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥))
(11) ((UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥)∧0 ≥ 0)
(14) (0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(0@z) = 0
POL(TRUE) = 2
POL(&&(x1, x2)) = 0
POL(EVAL(x1, x2)) = 1 + (2)x2 + (2)x1
POL(COND_EVAL(x1, x2, x3)) = (2)x3 + (2)x2
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = 0
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL(TRUE, x[1], y[1]) → EVAL(-@z(x[1], 1@z), y[1])
EVAL(x[3], y[3]) → COND_EVAL(&&(>@z(+@z(x[3], y[3]), 0@z), >@z(x[3], y[3])), x[3], y[3])
COND_EVAL(TRUE, x[1], y[1]) → EVAL(-@z(x[1], 1@z), y[1])
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(6) -> (3), if ((-@z(y[6], 1@z) →* y[3])∧(x[6] →* x[3]))
(7) -> (4), if ((y[7] →* y[4])∧(-@z(x[7], 1@z) →* x[4]))
(0) -> (6), if ((x[0] →* x[6])∧(y[0] →* y[6])∧(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])) →* TRUE))
(7) -> (0), if ((y[7] →* y[0])∧(-@z(x[7], 1@z) →* x[0]))
(6) -> (4), if ((-@z(y[6], 1@z) →* y[4])∧(x[6] →* x[4]))
(7) -> (3), if ((y[7] →* y[3])∧(-@z(x[7], 1@z) →* x[3]))
(6) -> (2), if ((-@z(y[6], 1@z) →* y[2])∧(x[6] →* x[2]))
(6) -> (0), if ((-@z(y[6], 1@z) →* y[0])∧(x[6] →* x[0]))
(7) -> (2), if ((y[7] →* y[2])∧(-@z(x[7], 1@z) →* x[2]))
(2) -> (7), if ((x[2] →* x[7])∧(y[2] →* y[7])∧(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])) →* TRUE))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(7) -> (0), if ((y[7] →* y[0])∧(-@z(x[7], 1@z) →* x[0]))
(0) -> (6), if ((x[0] →* x[6])∧(y[0] →* y[6])∧(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])) →* TRUE))
(6) -> (2), if ((-@z(y[6], 1@z) →* y[2])∧(x[6] →* x[2]))
(6) -> (0), if ((-@z(y[6], 1@z) →* y[0])∧(x[6] →* x[0]))
(7) -> (2), if ((y[7] →* y[2])∧(-@z(x[7], 1@z) →* x[2]))
(2) -> (7), if ((x[2] →* x[7])∧(y[2] →* y[7])∧(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])) →* TRUE))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
(1) (&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2]))=TRUE∧y[2]=y[7]∧x[2]=x[7]∧y[7]=y[0]∧-@z(x[7], 1@z)=x[0] ⇒ COND_EVAL2(TRUE, x[7], y[7])≥NonInfC∧COND_EVAL2(TRUE, x[7], y[7])≥EVAL(-@z(x[7], 1@z), y[7])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(2) (>@z(+@z(x[2], y[2]), 0@z)=TRUE∧>=@z(y[2], x[2])=TRUE∧>=@z(x[2], y[2])=TRUE∧<=@z(x[2], y[2])=TRUE ⇒ COND_EVAL2(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL2(TRUE, x[2], y[2])≥EVAL(-@z(x[2], 1@z), y[2])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(3) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧-1 + (-1)Bound + (2)y[2] ≥ 0∧0 ≥ 0)
(4) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧-1 + (-1)Bound + (2)y[2] ≥ 0∧0 ≥ 0)
(5) (x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ -1 + (-1)Bound + (2)y[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧0 ≥ 0)
(6) (1 + (-2)y[2] + x[2] ≥ 0∧(2)y[2] + -1 + (-1)x[2] ≥ 0∧x[2] ≥ 0∧(2)y[2] + -1 + (-1)x[2] ≥ 0 ⇒ -1 + (-1)Bound + (2)y[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧0 ≥ 0)
(7) (&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2]))=TRUE∧y[2]=y[7]∧x[2]=x[7]∧-@z(x[7], 1@z)=x[2]1∧y[7]=y[2]1 ⇒ COND_EVAL2(TRUE, x[7], y[7])≥NonInfC∧COND_EVAL2(TRUE, x[7], y[7])≥EVAL(-@z(x[7], 1@z), y[7])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(8) (>@z(+@z(x[2], y[2]), 0@z)=TRUE∧>=@z(y[2], x[2])=TRUE∧>=@z(x[2], y[2])=TRUE∧<=@z(x[2], y[2])=TRUE ⇒ COND_EVAL2(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL2(TRUE, x[2], y[2])≥EVAL(-@z(x[2], 1@z), y[2])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(9) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧-1 + (-1)Bound + (2)y[2] ≥ 0∧0 ≥ 0)
(10) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧-1 + (-1)Bound + (2)y[2] ≥ 0∧0 ≥ 0)
(11) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + (2)y[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(12) (-1 + (2)y[2] + x[2] ≥ 0∧(-1)x[2] ≥ 0∧x[2] ≥ 0∧(-1)x[2] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + (2)y[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(13) (-1 + (2)y[2] ≥ 0∧0 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + (2)y[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(14) (EVAL(x[2], y[2])≥NonInfC∧EVAL(x[2], y[2])≥COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])∧(UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥))
(15) ((UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(16) ((UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥))
(18) (0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(19) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥))
(20) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(21) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(22) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(23) (0 ≥ 0∧0 = 0∧0 = 0∧1 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥))
(24) (x[6]=x[2]∧x[0]=x[6]∧y[0]=y[6]∧&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0]))=TRUE∧-@z(y[6], 1@z)=y[2] ⇒ COND_EVAL1(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL1(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(25) (>@z(y[0], x[0])=TRUE∧>@z(+@z(x[0], y[0]), 0@z)=TRUE∧>=@z(y[0], x[0])=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(x[0], -@z(y[0], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(26) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(27) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(28) (-1 + y[0] + (-1)x[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) (-1 + y[0] ≥ 0∧y[0] ≥ 0∧(2)x[0] + -1 + y[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(30) ((-2)x[0] + y[0] ≥ 0∧1 + (-2)x[0] + y[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(31) ((-2)x[0] + y[0] ≥ 0∧1 + (-2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(32) ((2)x[0] + y[0] ≥ 0∧1 + (2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(33) (y[0] ≥ 0∧1 + y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(34) (x[0]=x[6]∧-@z(y[6], 1@z)=y[0]1∧y[0]=y[6]∧&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0]))=TRUE∧x[6]=x[0]1 ⇒ COND_EVAL1(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL1(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(35) (>@z(y[0], x[0])=TRUE∧>@z(+@z(x[0], y[0]), 0@z)=TRUE∧>=@z(y[0], x[0])=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(x[0], -@z(y[0], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(36) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(37) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(38) (-1 + y[0] + (-1)x[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(39) (-1 + y[0] ≥ 0∧y[0] ≥ 0∧(2)x[0] + -1 + y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(40) ((-2)x[0] + y[0] ≥ 0∧1 + (-2)x[0] + y[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(41) ((-2)x[0] + y[0] ≥ 0∧1 + (-2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(42) ((2)x[0] + y[0] ≥ 0∧1 + (2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(43) (y[0] ≥ 0∧1 + y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(0@z) = 0
POL(COND_EVAL1(x1, x2, x3)) = -1 + (2)x3 + x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(FALSE) = -1
POL(>@z(x1, x2)) = -1
POL(=@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL2(x1, x2, x3)) = -1 + (2)x3
POL(EVAL(x1, x2)) = -1 + (2)x2
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL1(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], 1@z))
COND_EVAL2(TRUE, x[7], y[7]) → EVAL(-@z(x[7], 1@z), y[7])
COND_EVAL2(TRUE, x[7], y[7]) → EVAL(-@z(x[7], 1@z), y[7])
EVAL(x[2], y[2]) → COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])
EVAL(x[0], y[0]) → COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 → FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(0) -> (6), if ((x[0] →* x[6])∧(y[0] →* y[6])∧(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])) →* TRUE))
(6) -> (2), if ((-@z(y[6], 1@z) →* y[2])∧(x[6] →* x[2]))
(6) -> (0), if ((-@z(y[6], 1@z) →* y[0])∧(x[6] →* x[0]))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(0) -> (6), if ((x[0] →* x[6])∧(y[0] →* y[6])∧(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])) →* TRUE))
(6) -> (0), if ((-@z(y[6], 1@z) →* y[0])∧(x[6] →* x[0]))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
(1) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥))
(2) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥))
(5) (0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])), ≥)∧0 = 0∧0 = 0)
(6) (x[0]=x[6]∧-@z(y[6], 1@z)=y[0]1∧y[0]=y[6]∧&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0]))=TRUE∧x[6]=x[0]1 ⇒ COND_EVAL1(TRUE, x[6], y[6])≥NonInfC∧COND_EVAL1(TRUE, x[6], y[6])≥EVAL(x[6], -@z(y[6], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(7) (>@z(y[0], x[0])=TRUE∧>@z(+@z(x[0], y[0]), 0@z)=TRUE∧>=@z(y[0], x[0])=TRUE ⇒ COND_EVAL1(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL1(TRUE, x[0], y[0])≥EVAL(x[0], -@z(y[0], 1@z))∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(8) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧(-1)Bound + (2)y[0] ≥ 0∧1 ≥ 0)
(9) (-1 + y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥)∧(-1)Bound + (2)y[0] ≥ 0∧1 ≥ 0)
(10) (-1 + y[0] + (-1)x[0] ≥ 0∧y[0] + (-1)x[0] ≥ 0∧x[0] + -1 + y[0] ≥ 0 ⇒ 1 ≥ 0∧(-1)Bound + (2)y[0] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(11) (y[0] ≥ 0∧1 + y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0 ⇒ 1 ≥ 0∧2 + (-1)Bound + (2)x[0] + (2)y[0] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(12) (y[0] ≥ 0∧1 + y[0] ≥ 0∧(2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 1 ≥ 0∧2 + (-1)Bound + (2)x[0] + (2)y[0] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(13) (y[0] ≥ 0∧1 + y[0] ≥ 0∧(-2)x[0] + y[0] ≥ 0∧x[0] ≥ 0 ⇒ 1 ≥ 0∧2 + (-1)Bound + (-2)x[0] + (2)y[0] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
(14) ((2)x[0] + y[0] ≥ 0∧1 + (2)x[0] + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 1 ≥ 0∧2 + (-1)Bound + (2)x[0] + (2)y[0] ≥ 0∧(UIncreasing(EVAL(x[6], -@z(y[6], 1@z))), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(0@z) = 0
POL(COND_EVAL1(x1, x2, x3)) = -1 + (2)x3 + (-1)x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(EVAL(x1, x2)) = 1 + (2)x2
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = 2
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
EVAL(x[0], y[0]) → COND_EVAL1(&&(&&(>@z(+@z(x[0], y[0]), 0@z), >=@z(y[0], x[0])), >@z(y[0], x[0])), x[0], y[0])
COND_EVAL1(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], 1@z))
COND_EVAL1(TRUE, x[6], y[6]) → EVAL(x[6], -@z(y[6], 1@z))
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(7) -> (0), if ((y[7] →* y[0])∧(-@z(x[7], 1@z) →* x[0]))
(7) -> (2), if ((y[7] →* y[2])∧(-@z(x[7], 1@z) →* x[2]))
(2) -> (7), if ((x[2] →* x[7])∧(y[2] →* y[7])∧(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])) →* TRUE))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(7) -> (2), if ((y[7] →* y[2])∧(-@z(x[7], 1@z) →* x[2]))
(2) -> (7), if ((x[2] →* x[7])∧(y[2] →* y[7])∧(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])) →* TRUE))
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)
(1) (EVAL(x[2], y[2])≥NonInfC∧EVAL(x[2], y[2])≥COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])∧(UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥))
(2) ((UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 ≥ 0)
(5) (0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])), ≥)∧0 = 0)
(6) (&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2]))=TRUE∧y[2]=y[7]∧x[2]=x[7]∧-@z(x[7], 1@z)=x[2]1∧y[7]=y[2]1 ⇒ COND_EVAL2(TRUE, x[7], y[7])≥NonInfC∧COND_EVAL2(TRUE, x[7], y[7])≥EVAL(-@z(x[7], 1@z), y[7])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(7) (>@z(+@z(x[2], y[2]), 0@z)=TRUE∧>=@z(y[2], x[2])=TRUE∧>=@z(x[2], y[2])=TRUE∧<=@z(x[2], y[2])=TRUE ⇒ COND_EVAL2(TRUE, x[2], y[2])≥NonInfC∧COND_EVAL2(TRUE, x[2], y[2])≥EVAL(-@z(x[2], 1@z), y[2])∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥))
(8) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧-1 + (-1)Bound + (2)y[2] + (2)x[2] ≥ 0∧1 ≥ 0)
(9) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧-1 + (-1)Bound + (2)y[2] + (2)x[2] ≥ 0∧1 ≥ 0)
(10) (-1 + x[2] + y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0∧x[2] + (-1)y[2] ≥ 0∧y[2] + (-1)x[2] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧-1 + (-1)Bound + (2)y[2] + (2)x[2] ≥ 0)
(11) (x[2] ≥ 0∧(2)y[2] + -1 + (-1)x[2] ≥ 0∧1 + (-2)y[2] + x[2] ≥ 0∧(2)y[2] + -1 + (-1)x[2] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(-@z(x[7], 1@z), y[7])), ≥)∧1 + (-1)Bound + (2)x[2] ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(0@z) = 0
POL(TRUE) = 2
POL(&&(x1, x2)) = -1
POL(FALSE) = -1
POL(>@z(x1, x2)) = -1
POL(=@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL2(x1, x2, x3)) = -1 + (2)x3 + (2)x2
POL(EVAL(x1, x2)) = -1 + (2)x2 + (2)x1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL2(TRUE, x[7], y[7]) → EVAL(-@z(x[7], 1@z), y[7])
COND_EVAL2(TRUE, x[7], y[7]) → EVAL(-@z(x[7], 1@z), y[7])
EVAL(x[2], y[2]) → COND_EVAL2(&&(&&(>@z(+@z(x[2], y[2]), 0@z), >=@z(y[2], x[2])), =@z(x[2], y[2])), x[2], y[2])
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
Cond_eval2(TRUE, x0, x1)
Cond_eval(TRUE, x0, x1)
Cond_eval1(TRUE, x0, x1)
eval(x0, x1)
Cond_eval3(TRUE, x0, x1)